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Abstract. Phase diagrams of two inhomogeneous annealed Ising models on the triangular 
lattice are constructed in an exact way. The interimpurity exchange constants (bonds), of 
the same but arbitrary value and sign, can be located along the horizontal edges of the 
triangles. In the first model the remaining non-random couplings are ferromagnetic and 
in the second they are antiferromagnetic. The dependence of the correlation functions and 
magnetisation on the temperature is calculated and discussed. It is shown that, for certain 
values of the impurity bond couplings and a range of their concentrations, there is no net 
magnetic moment at T = 0 and low temperatures. The magnetisation appears at some finite 
temperature and then vanishes at a higher one. This increase of the magnetisation with 
the temperature is connected with the role of entropy in determining the minimum of the 
free energy. 

1. Introduction 

Ising models on the triangular lattice have been investigated by many authors. Referen- 
ces to earlier works can be found in a series of papers by Stephenson (1964,1970, a, b), 
where the most complete discussion of the correlation functions for the case of isotropic 
and anisotropic interactions is also given. The main difference between phase diagrams 
on the triangular lattice and those on other two-dimensional lattices is that, when all 
the interactions are equal and antiferromagnetic, each triangle is frustrated and as a 
result the net magnetic moment is zero, even at T = 0. If one of the interactions is 
weaker, the spins along that direction order ferromagnetically, despite antiferromag- 
netic coupling between them, frustration is lifted and non-zero magnetisation appears. 
In the exactly solved Ising model on the square lattice with additional interactions 
along one of the diagonals to next-nearest neighbours ( N N N )  it was found (Vaks et a1 
1965) that for a certain ratio of the N N  to N N N  interactions, there are two transition 
temperatures and the ground state is magnetically not ordered. The same effect has 
also been found on the square lattice. This unusual behaviour-increasing of the 
magnetisation with the temperature-is called re-entrance. 

Syozi (1972) used the decorated bonds technique for a model with unequal ferro- 
and antiferromagnetic couplings. Re-entrance appeared in the ( T,, x) phase diagram, 
where x was the concentration of one kind of bond at the side of the weaker exchange 
coupling. Thorpe and Beeman (1976) found the re-entrance in an annealed Ising 
model for rectangular or Gaussian distribution of the coupling constants, provided 
the width of the distribution was large enough to contain positive and negative 
couplings. Kitatani eta1 (1985), where an extensive list of references can be found, 
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considered a system with three kinds of interactions-two ferro- and one antiferromag- 
netic. The phase diagram was constructed through investigations of spin correlations 
in a finite lattice. 

Explanation of this phenomenon has been given by Oguchi and Ueno (1975), 
Derrida et al (1978) and Ueno (1986) as the effect of minimising the free energy by 
increasing the entropy in a frustrated system. 

In this paper we shall present two Ising models on the triangular lattice. In both 
cases the disorder will be restricted to one direction only. Although the annealed 
approach will be used, for certain values of the parameters frustration will be present 
in both models. On the other hand, the models will show the re-entrance phenomenon 
even when the frustration is absent. Exact equations to determine temperature depen- 
dence of the magnetisation, three types of correlation functions and construction of 
the phase diagrams will be derived. 

2. The models 

Two models, A and B, are considered. In model A two interactions within each triangle 
are ferromagnetic, while the third one (horizontal) can be exchanged for an impurity 
bond. Its coupling constant, the same for all impurities, can have arbitrary value and 
sign. In model B, the two constant interactions are equal and antiferromagnetic, while 
the third one (also horizontal) has random sign and strength as in model A. Both 
cases will be solved exactly in the annealed approach. Let us begin with model A. 
Denoting the spin at site 1 by s1 ( S  = i) and the random coupling constant by Ji,/, the 
Hamiltonian is 

where { I }  means summation over random (horizontal) bonds and {ZI} over pairs of 
non-random ones (see figure 1). The lower case j denotes the temperature normalised 
coupling constant j = J /  kT. Its inverse, k T /  J = 1, is our reduced temperature. Introduc- 
ing qi,f equal to 1 if the bond between the sites i and I is J2 and 0 if it is equal to J, 
we have 

Ji,/ = qi,,Jz + ( 1 - qi,i) J. (2) 

Since we are using the annealed approach, the grand canonical partition function is 

Here p is the chemical potential of the impurity bonds. We may map our disordered 
system into a regular anisotropic Ising model on the triangular lattice by demanding 
that, for a single bond, 

where k and C are to be determined. In the regular model the horizontal coupling is 
k and the other two are, as in the original disordered model, j. Hence 

2 2  = exp( C N ) Z (  k )  ( 5 )  
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where N is the number of horizontal bonds and Z (  k) is the partition function of the 
regular anisotropic model. From (4) we get two equations to determine k and C: 

exp(2k) = [ex~(j)+exp(j2+/l.)I[ex~(-j)+exp(-j2+ p1I-l (6) 

exp(2C) = [exp(j)  + exp(j2+ p)l[exp(-j) +exp(-j2+ p)I. (7) 
The concentration, p A ,  of the impurity bonds can be found by differentiating the 

free energy derived from ( 5 )  with respect to the chemical potential: 

where = (sosl) is the N N  correlation function along the horizontal line for the regular 
model. The chemical potential, p, was chosen to be temperature dependent, so as to 
render pA independent of the temperature. Eliminating p with the help of (6) and (7) 
we arrive at 

sinh( k - j) 
P A  = sinh( j 2  - j) 

[cosh( j2 - k) + sinh( j, - k)]. (9) 

To get pA as a function of the two original couplings, J and J 2 ,  we have to express K 
by them. This can be done (Syozi 1972), but only on the critical line, where 

exp(-2k) = sinh(2j). (10) 
Putting it into (9) we get finally 

To calculate e l  we use the expression derived by Stephenson (1964), which in our 
case is 

where 
9 = ( d + w ) - ” ’  

and 

v = tanh(2j) Uk = tanh(2k). 

Having the values of U and V k ,  we may once again take a formula from Stephenson 
(1964), this time for magnetisation: 

(16) m = (1 - x2)] i4 

where 

It is of interest to also calculate other correlation functions: E ,  = (s0s2), E~ = (sosJ) 
for the second the third neighbours on the horizontal line, as well as those along one 
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of the remaining edges (‘diagonal’): Edl = (sos4), &d2 = (sos5) and &d3 = (sos6) (see figure 
1). Following the calculations presented by Stephenson (1964) we get 

(s0s2) = E:-- -  u,a- ,  (18) 
(19) (sox3)= & l + u 2 u ~ 1 + u : u ~ 2 - & l ( u 2 ~ ~ 2 + 2 u , u ~ , )  3 2 2  

where 

a,, =L J (d cos w F 3 sin U )  dw 
r o  

a*2 - -1 ir (a cos 2w =F 93 sin 2w) dw 
T o  

with d and 3 given by (14). To obtain Edl, Ed2, &d3,  the formulae (20) can be used 
with 

d = 2 ~ ( 1 + ~ ~ ) ( 1 + ~ ~ ) ~ - ( 1  - V ~ ) ( I + V ; )  COS 

9 = (1 - v ~ ) ~ (  1 - U;) sin w. (21) 
To get the temperature dependence of the magnetisation and correlation functions 

we find k from (9) for given values of j and j,, then calculate U and V k  and insert it 
into (17). The results are shown in figures 2 and 3, respectively. 

In model B, the two constant interactions J are antiferromagnetic and the third, 
horizontal, Jv is random. Hence the Hamiltonian is ( J < O )  

{I1 {ZII 
PXB = - C jipisl- j (22) 

which leads to the grand partition function, as given by (3). Mapping on a regular 
antiferromagnetic triangular lattice, we obtain expressions analogous to ( 6 )  and (7). 
Differentiating the logarithm of the partition function with respect to the chemical 
potential, we get the concentration, pB, of the impurity bonds 

sinh( k + j )  
sinh( j2 + j )  

[cosh( j 2  - k) + E~ sinh( j2 - k)]. P B =  

Using the expression for the critical line 
exp(2k) = -sinh(2j) 

we express pB by the original couplings j and j,: 

exp(2j2 - 2j)( 1 + E ~ )  + ). (25) 
1 - exp(4j) 

1 + exp(4j) 
4[exp(2j2-2j) - 11 PB= 

Figure 1. Basic triangle. Impurity bonds may be located only on the horizontal edges of 
the triangles. 
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Figure 2. Magnetisation plotted against reduced temperature, t = kT/J .  -: model A, 
p = 0.2, J, = - 1.3; - . -: model A, p = 0.3, J2 = - 1.3; - - -: model B, p = 0.48, J2 = 1. 

Here is the N N  correlation function along the horizontal line. To calculate the 
magnetisation and the correlation functions, (16) and (18)-(21), together with (23), 
should be used. The resulting curves are shown in figures 2 and 4. 

3. Results 

3.1. Model A 

Using (1 1) we construct phase diagrams ( t , ,  pA) for different values of the impurity 
couplings J2 (figure 5 ) .  For O < J 2 < J =  1, t ,  decreases with p .  For J 2 = 0 ,  which 
corresponds to dilution, we arrive, at p = 1, to the Ising model on the square lattice 
and the Onsager value for t, is recovered. For -1 < J 2 < 0  the ferromagnetic bonds 
are stronger and hence the antiferromagntic bonds are broken, i.e. the antiferromagneti- 
cally coupled spins order ferromagnetically. The cost in the energy paid for breaking 
the bonds shows in diminishing t,, which however remains finite. For J2 = -1 the 
strength of the host and impurity couplings is the same and frustration appears in the 
system. The number of frustrated plaquettes depends on the arrangement of the 
impurities. For p > the net magnetic moment is absent, even at t = 0. A re-entrant 
behaviour is found for a small range of concentrations exceeding p = i. For J2 < -1 
and a sufficiently small concentration of the impurities, there are two transition 
temperatures, tCl and rc2, where tC2> tel. As shown in figure 2, the system is ferromag- 
netic between tCl and tc2 and corresponds to a ferromagnetic region bounded by a 
paramagnetic region below and above this region. Because the interactions are not 
equal, there is no frustration, although some bonds have to be broken to realise a state 
with minimum energy. 

To explain this unusual behaviour for J2<-1, let us start with the ground state. 
If an antiferromagnetic impurity bond is isolated, then it is energetically more favour- 
able to break this single bond rather than the five neighbouring ferromagnetic ones 
(see figure 6 ( a ) ) .  The energy loss, per impurity bond, is 

El = IJ2l. 
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Figure 3. Model A. Correlation functions plotted against reduced temperature. p = 0.33, 
J z  = -1.3. ( a )  Horizontal correlations. -: - - -: - E ~ ,  - -. . - E ~ .  ( b )  Diagonal 
correlations. -: +Edl ; - - -: - E d , ;  -.  -: - E d j .  

If, however, the impurities are arranged in stripes, as shown in figure 6 ( b ) ,  the 
ferromagnetic bonds get broken and that costs 

E2 = J. 

The system splits into domains of opposite magnetisation, separated by 'domain walls' 
along the impurities and broken ferromagnetic bonds. The net magnetic moment is 
zero. The difference of the two energies is 

AE = El - E2 = ( J z /  - J. (26) 
Hence, if 1J21 < J = 1, the first situation of isolated impurities, is more favourable and 
m > 0, while if IJ2/ > J,  the domain-like pattern is chosen, yielding m = 0. In this case, 
for p close to 1, the 'domains' are quite small and they become larger with decreasing 
p .  To create a wall, in a N x N system, approximately N impurity bonds are needed. 
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Figure 4. Model B. Correlation functions plotted against reduced temperature. p = 0.48, 
J 2 =  1. ( a )  Horizontal correlations. -: - E , ;  - - -: - E ~ ;  - -: - p 3 .  ( b )  Diagonal 
correlations. -: --Fd, ; - - -: - E d Z ;  - -. , -Ed3. 

P 

FigureS. ModelA. (t,,p,)phasediagram.-:J2=-1.3;- - -:J,=-l;--.--. . J2 = -0.8; 
_ _ _ _  : J,=O. 
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Figure 6. Model A. Impurity bond arrangements. Thick lines correspond to the impurity 
bonds, broken ones to unsatisfied (broken) bonds. ( a )  Isolated impurity, ( b ) ,  (c )  two 
domain-like patterns. 

Therefore domain walls may exist even for p - 1/ N. There are several ways of forming 
a wall, all corresponding to the same energy E 2 .  In a macroscopic system it is, however, 
irrelevant which one is realised. 

To explain the effect of the temperature, we shall follow the reasoning of Oguchi 
and Ueno (1975), Derrida et al (1978) and Ueno (1986). Suppose that J 2 <  -1. Then 
at T = 0 the domain-like state is energetically preferred. The pattern shown in figure 
6( b )  is not unique. There are, however, far more possibilities for the impurity bonds 
to be arranged randomly, inside a domain, than in the state of isolated impurities. As 
long as T = 0, the minimum of the free energy is equivalent to the minimum of the 
internal energy E. With increasing temperature the entropy, S, comes into play and 
the state the system is in is determined by 

m i n F = m i n ( E - T S ) .  

Therefore the gain by the second (negative) term can exceed the loss through the first 
one connected with passing from the topologically ordered (but with m = 0) domain-like 
state into the state with scattered impurity bonds and m > 0. The transition is therefore 
driven by the entropy. The temperature destroys the topological order of the ground 
state by moving the impurity bonds out of the domain walls and into the domains. If 
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the domains are large, as is the case for small p (few domain walls), there are more 
available bond positions. This means the entropy is larger than it is for greater p ,  when 
the domains are narrower. Larger entropy means, in turn, that a lower temperature is 
needed to compensate for the loss of the internal energy, hence the entropy-driven 
transition into the ferromagnetic state occurs at lower temperatures than for larger p .  
With increasing p the upper critical temperature decreases as well, since there are more 
antiferromagnetic bonds in the system. Finally, at a threshold concentration, p t  , 
depending on J 2 ,  the system has m = 0 at all temperatures. For T > 0, the impurity 
bonds are scattered but the ferromagnetic bonds are too weak, as compared with J 2 ,  
to sustain long-range order. 

As seen from the comparison of the two magnetisation curves in figure 2 ,  the 
entropy-driven transition is getting sharper at lower concentrations. This might be 
explained by the low temperatures at which it takes place and by weak thermal 
fluctuations of the spins. 

The behaviour of the correlation functions is typical for a system with two transition 
temperatures (see, e.g., Kitatani et a1 1985). For low temperatures all correlation 
functions reach constant values, different from those attained at high temperatures. 
This suggests the existence of magnetic ordering, even if the net magnetic moment is 
zero. Higher values of the diagonal correlations than the horizontal ones, as well as 
the values taken by both, indicate that the ground state may well have the form of a 
domain-like structure shown in figure 6(b),  with a possible admixture of other types 
of domains, like the one shown in figure 6( c). The domains are, for pA = 0.33, two 
ferromagnetic couplings wide, which gives < 0. Decreasing the con- 
centration to, say, pA = 0.2, leads to E~ > 0 and only slightly negative. The diagonal 
correlations act predominantly within the domains and are therefore positive. 

> 0 but E ~ ,  

3.2. Model B 

For pB = 0, which corresponds to the pure, completely frustrated, antiferromagnetic 
system, t ,=O and there is no long-range order in the model. Therefore its (t , ,pB) 
phase diagram (shown in figure 7) differs from that for model A. Irrespective of the 
value of the impurity coupling, the system cannot order ferromagnetically if pB < 0.5. 
If the impurities are antiferromagnetic and stronger than the host ones, there is no 
ordering for any concentration, in agreement with the earlier observation by Stephenson 
(1964). If the impurities are antiferromagnetic but weaker, ferromagnetic ordering 
along the horizontal lines appears for p > 0.5. This is the reason that the re-entrance 
here manifests itself only for p slightly larger than 4. The critical temperature grows 
as the impurity coupling strength approaches zero and becomes ferromagnetic. At 
that point the re-entrance appears and the region of concentrations over which it can 
be observed increases with increasing strength of the (ferromagnetic) impurity coupling. 
The region is, however, bounded. No matter how strong the impurity coupling, there 
cannot be a state with ferromagnetic ordering below pB = 0.4. The mechanism of the 
re-entrance is the same here as in model A. However, since the concentration of 
impurities is much higher, the possibility of deplacement is more resstricted, and 
consequently the role of the entropy is weaker. The ground state, shown in figure 8, 
has the form of ferromagnetic stripes coupled antiferromagnetically. 

Hence Ed, and €d3 are always negative, while Ed, and all E are always positive. 
As in model A, this pattern is not the only one possible. When p # 0.5, coupling within 
the layers is not homogeneous. Because of the nearly antiferromagnetic ordering (for 
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Figure 7. Model B. ( t , ,  p s )  phase diagram. -: J2 = 2; - - - :  J 2 -  - 1;  - .  -: J 2 -  - 0.  3 - - - - :  
J2 = -0.5. 

Figure 8. Model B. Bond arrangements in the ground state for pB = f and J2 = 1. Thick 
lines: impurity bonds; broken ones: unsatisfied couplings. 

p Z 0.5) in the ground state, the correlation functions have larger values than in model 
A. 

4. Conclusions 

We have presented two Ising models on the triangular lattice with impurities which 
may affect only the horizontal bonds. In model A, the host system is ferromagnetic 
and in model B it is antiferromagnetic. The impurity bond in both models may have 
arbitrary value and sign. The models have been solved within the annealed approach 
and they both show, for certain concentrations of impurities and values of their coupling 
constants, the re-entrance phenomenon. In the ground state the system has zero 
magnetic moments which persist up to the lower critical temperature, tel. Further 
increase in the temperature produces a non-zero magnetisation, which vanishes again 
at the upper critical temperature, f c 2 .  This kind of behaviour can be explained by 
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assuming that, in the ground state, the system is split into domains of opposite 
magnetisation, separated by domain walls composed of impurities and broken bonds. 
For J 2 #  -J (model A) and J , # J  (model B), there is no frustration, but there are 
plaquettes with bonds which are ‘broken’ in the sense that the arrangements of the 
spins is determined not by bond coupling but by the free energy minimum. The 
temperature behaviour of the correlation functions, from which the ground-state pattern 
is deduced, shows that, for model A and pA = 1, an antiferromagnetic state with tilted 
planes of spins of the same orientation is realised at t = 0. A decrease in pA produces 
domains. Such a situation corresponds to the minimum of the energy, which is also 
the free energy minimum at t = 0. With t > 0 the entropy term becomes important, 
favouring random arrangement of the impurities. They move away from the domain 
walls, which are deformed. The domain pattern is destroyed and a state with non-zero 
magnetisation is created. Since J2 f J,  there is no frustration. 

Models A and B exhibit several differences. For pB < 0.5 there is no net magnetic 
moment in the ground state of model B, which evidently arises from complete frustration 
of the pure system. In contrast to model A, impurities in model B reduce the amount 
of frustrated plaquettes or broken bonds. At t = 0 and pB S 0.5, the antiferromagnetic 
ordering is destroyed by thermal fluctuations of the spins and by displacements of the 
impurities, as a consequence of the annealed approach. The result is a continuous 
transition, at t C l ,  from antiferromagnetic to ferromagnetic ordering. It is marked on 
the correlation functions diagrams by weakening of the correlations around t,, , which 
increases with the range of the correlations (see figure 4). 

Qualitative comparison of the results obtained in this paper with those already 
known shows that the phase diagram for model B with the common point, at t = 0, 
for all T, curves is similar to that obtained by Syozi (1972). Also the existence of a 
threshold concentration below (or above, depending on the model) which in the ground 
state there is a net magnetic moment is known (see, e.g., Thorpe and Beeman 1976, 
Kitatani et a1 1985). We have this situation for model B, irrespective of the coupling 
constants ratio, and in model A when the ferro- and antiferromagnetic couplings have 
the same strength. The appearance of the ‘domain’ structure is novel. 
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